
Scalable and Effective Conductance-Based Graph Clustering

Longlong Lin1, Rong-Hua Li 2, Tao Jia1

1College of Computer and Information Science, Southwest University, Chongqing 400715, China
2Beijing Institute of Technology, China

longlonglin@swu.edu.cn; lironghuabit@126.com; tjia@swu.edu.cn

Abstract
Conductance-based graph clustering has been recognized as
a fundamental operator in numerous graph analysis applica-
tions. Despite the significant success of conductance-based
graph clustering, existing algorithms are either hard to obtain
satisfactory clustering qualities, or have high time and space
complexity to achieve provable clustering qualities. To over-
come these limitations, we devise a powerful peeling-based
graph clustering framework PCon. We show that many ex-
isting solutions can be reduced to our framework. Namely,
they first define a score function for each vertex, then itera-
tively remove the vertex with the smallest score. Finally, they
output the result with the smallest conductance during the
peeling process. Based on our framework, we propose two
novel algorithms PCon core and PCon de with linear time
and space complexity, which can efficiently and effectively
identify clusters from massive graphs with more than a few
billion edges. Surprisingly, we prove that PCon de can iden-
tify clusters with near-constant approximation ratio, resulting
in an important theoretical improvement over the well-known
quadratic Cheeger bound. Empirical results on real-life and
synthetic datasets show that our algorithms can achieve 5∼42
times speedup with a high clustering accuracy, while using
1.4∼7.8 times less memory than the baseline algorithms.

Introduction
Graph clustering is an important algorithmic primitive with
applications in numerous tasks, including image segmenta-
tion (Shi and Malik 1997; Tolliver and Miller 2006), com-
munity detection (Fortunato 2009; Leskovec, Lang, and Ma-
honey 2010), and machine learning (Belkin and Niyogi
2001; Bianchi, Grattarola, and Alippi 2020). Generally,
graph clustering aims to partition the entire graph into sev-
eral non-overlapping vertex sets, called clusters, such that
the vertices within the same cluster have more connections
than the vertices in different clusters. Many graph cluster-
ing methods have been proposed, such as modularity based
graph clustering (Newman 2004), structural graph cluster-
ing (Xu et al. 2007), and cohesive subgraph based cluster-
ing (Chang and Qin 2019). Perhaps, the most representative
graph clustering method is the conductance-based clustering
(Andersen, Chung, and Lang 2006; Yang et al. 2019) due to
its nice structure properties and solid theoretical foundation.

Copyright c© 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Given an undirected graph G(V,E), the conductance of
the cluster C is defined as φ(C) = |E(C,C̄)|

min{vol(C),2m−vol(C)} ,
in which |E(C, C̄)| is the number of edges with one end-
point in C and another not in C, vol(C) is the sum of the
degree of all vertices in C, and m is the number of the edges
in G. Thus, a smaller φ(C) implies that the number of edges
going out of C is relatively small compared with the number
of edges within C. As a consequence, the smaller the φ(C),
the better the clustering quality of the cluster C (Leskovec,
Lang, and Mahoney 2010; Yang and Leskovec 2015). There-
fore, conductance-based graph clustering aims at identifying
a vertex set C with the smallest φ(C). However, identify-
ing the smallest conductance φ∗ ∈ (0, 1] raises significant
challenges due to its NP-hardness (Chawla et al. 2006). On
the positive side, many approximate or heuristic algorithms
have been proposed to either reduce the conductance of the
returned cluster or improve the efficiency. For example, clas-
sic Fiedler vector-based spectral clustering algorithm out-
puts a cluster with conductance O(

√
φ∗) (Alon and Mil-

man 1985). Unfortunately, such an algorithm has to com-
pute the eigenvector corresponding to the second smallest
eigenvalue of normalized Laplacian matrix of G, resulting
in prohibitively high time and space complexity. To boost
the efficiency, numerous diffusion-based local clustering al-
gorithms have been proposed, whose running time depends
only on the size of the resulting cluster and is independent
of or depends at most polylogarithmically on the size of the
entire graph (Spielman and Teng 2004; Andersen, Chung,
and Lang 2006; Kloster and Gleich 2014). However all these
diffusion-based local clustering algorithms are heuristic and
the clustering quality of their output is heavily dependent on
many hard-to-tune parameters, resulting in that their clus-
tering performance are unstable and in most cases very poor
(Zhu, Lattanzi, and Mirrokni 2013; Fountoulakis, Wang, and
Yang 2020). Thus, it is very challenging to improve both the
computational efficiency and the clustering quality.

To this end, we propose a powerful peeling-based com-
puting framework PCon, which can efficiently and effec-
tively identify conductance-based clusters. In particular, we
observe that Fiedler vector-based spectral clustering algo-
rithms and diffusion-based local clustering algorithms are
essentially a peeling-based computing paradigm. Namely,
they first define a score function for each vertex, then iter-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

4471

atively remove the vertex with the smallest score. Finally,
they output the results with the smallest conductance during
the peeling process. Thus, the primary challenge is how to
design a proper score function that is easier to compute and
can obtain better clustering quality. With the help of the con-
cept of degeneracy ordering (Batagelj and Zaversnik 2003),
we propose a heuristic algorithm PCon core with linear time
and space complexity. Specifically, PCon core assigns the
score of each vertex as the vertex’s degeneracy ordering. To
further improve the clustering quality, we devise another ef-
fective algorithm PCon de, which assigns the score of each
vertex based on the degree ratio (Definition 3). Degree ratio
is a novel concept, which is the ratio of the degree of the ver-
tex in the current subgraph to the degree of the vertex in the
original graph. Surprisingly, we prove that PCon de has a
near-constant approximation ratio, which achieves an impor-
tant theoretical improvement over the well-known quadratic
chegger bound of Fiedler vector-based spectral clustering.
In a nutshell, our main contributions are listed as follows.

• Novel Computing Framework: We introduce PCon, a
novel peeling-based graph clustering framework, which
can embrace most state-of-the-art algorithms.
• Novel algorithms: Based on PCon, we develop two

novel and efficient algorithms with linear time and space
complexity. One is a heuristic algorithm which aims to
optimize efficiency, while the other is an approximation
algorithm which can obtain provable clustering qualities.
• Extensive Experiments: We conduct extensive experi-

ments on eleven datasets with six competitors to test the
scalability and effectiveness of the proposed algorithms.
The experimental results show that our proposal outper-
forms diffusion-based local clustering by a large mar-
gin in terms of clustering accuracy, and achieves 5∼42
times speedup with a high clustering accuracy while us-
ing 1.4∼7.8 times less memory than Fiedler vector-based
spectral clustering.

Problem Formulation
We use G(V,E) to denote an undirected graph, in which V
(resp. E) indicates the vertex set (resp. the edge set) of G.
Let |V | = n and |E| = m be the number of vertices and the
number of edges, respectively. For simplicity, in this paper,
we focus on un-weighted graphs1. Let GS = (S,ES) be
the subgraph induced by S if S ⊆ V and ES = {(u, v) ∈
E|u, v ∈ S}. We use NS(v) = {u ∈ S|(u, v) ∈ E} to
denote the neighbors of v in S. Let dS(v) = |NS(v)| be the
degree of vertex v in S. When the context is clear, we use
N(v) and d(v) to represent NV (v) and dV (v), respectively.
For a vertex subset S ⊆ V , we define S̄ = V \ S as the
complement of S. We use E(S, S̄) = {(u, v) ∈ E|u ∈
S, v ∈ S̄} to represent the edges with one endpoint in S and
another not in S. Let vol(S) =

∑
u∈S d(u) be the sum of

the degree of all vertices in S.
A cluster is a vertex set S ⊆ V . According to (Leskovec,

Lang, and Mahoney 2010; Yang and Leskovec 2015), we

1Because our results can be easily extended to the weighted
case in a straightforward manner.

v1

v2

v6v4

v3
v5

v7 v9

v8

Clusters Conductance

{v1}
{v1,v2}

{v1,v2,v3}

{v1,v2,v3,v4}

2/min{2,20-2}=1

3/min{5,20-5}=3/5

3/min{9,20-9}=3/11
1/min{11,20-11}=1/9

Figure 1: Illustration of conductance for a synthetic graph
with 9 vertices and 10 edges. The conductance of several
clusters is shown in the box. The smallest conductance
φ∗ = 1/9 and the corresponding cluster is {v1, v2, v3, v4}
included in the red circle.

know that a cluster S is good if the cluster is densely con-
nected internally and well separated from the remainder of
G. Therefore, we use a representative metric conductance
(Fiedler 1973; Spielman and Teng 2004; Andersen, Chung,
and Lang 2006; Kloster and Gleich 2014) to measure the
quality of a cluster S.

Definition 1 Given an undirected graphG(V,E) and a ver-
tex subset S (V , the conductance of S is defined as
φ(S) = |E(S,S̄)|

min{vol(S),2m−vol(S)} . φ(V) = 1 for convenience.

By Definition 1, we have φ(S) = φ(S̄). Figure 1 illus-
trates the concept of conductance on a synthetic graph.

Problem Statement. Given an undirected graph G(V,E),
the goal of the conductance-base graph clustering is to iden-
tify a vertex subset S∗ ⊆ V , satisfying vol(S∗) ≤ m and
φ(S∗) ≤ φ(S) for any S ⊆ V . For simplicity, we use φ∗ to
represent φ(S∗).

Existing Solutions
Here, we review some state-of-the-art algorithms. For con-
venience, we classify these algorithms into three categories:
Fiedler vector-based spectral clustering, diffusion-based lo-
cal clustering, and other methods.

Fiedler Vector-Based Spectral Clustering
Fiedler vector-based spectral clustering obtains the cluster-
ing result by calculating the spectrum of the normalized
Laplacian matrix. Specifically, let A be the adjacency ma-
trix of G, where Auv = 1 if (u, v) ∈ E, and Auv = 0
otherwise. We use D to represent the diagonal degree ma-
trix of G, in which Duu = d(u). The Laplacian matrix of
G is defined as L = D − A. Furthermore, the normalized
Laplacian matrix is defined as L = D−1/2LD−1/2. The fol-
lowing theorem is an important theoretical basis of Fiedler
vector-based spectral clustering.

4472

Methods Accuracy Guarantee Time Complexity Remark

SC (Fiedler 1973) O(
√
φ∗) O(n3) Eigenvector-based

ASC (Trevisan 2017) O(
√

4φ∗ + 2ε) O((m+ n) 1
ε log n

ε) Eigenvector-based

NIBBLE (Spielman and Teng 2004) × O(
log 1

ε

ε) Diffusion-based
NIBBLE PPR (Andersen, Chung, and Lang 2006) × O(

log 1
αε

αε) Diffusion-based
HK Relax (Kloster and Gleich 2014) × O(

tet log(1
ε)

ε) Diffusion-based

PCon core (this paper) × O(m+ n) Degeneracy-based
PCon de (this paper) O(1/2 + 1/2φ∗) O(m+ n) Degree Ratio-based

Table 1: A comparison of state-of-the-art algorithms. φ∗ is the smallest conductance value and φ∗ ∈ (0, 1]. ε is the error
tolerance. α and t are model parameters of NIBBLE PPR and HK Relax, respectively. The space complexity of SC is O(n2)
and the rest is O(m+ n). × represents the corresponding method has no accuracy guarantee.

Theorem 1 (Cheeger inequality (Alon and Milman 1985))
Given an undirected graph G(V,E) and its normalized
Laplacian matrix L, we assume that λ2 is the second small-
est eigenvalue of L. Then, we have λ2/2 ≤ φ∗ ≤

√
2λ2.

At a high level, Fiedler vector-based spectral clustering
consists of three steps: (1) Compute the eigenvector x of λ2.
(2) Sort all entries in x such that x1 ≤ x2 ≤ ... ≤ xn. (3)
Output S = arg minφ(Si), in which Si = {x1, x2, ..., xi}.
Theorem 2 ((Fiedler 1973; Alon and Milman 1985)) Let
S be the vertex subset returned by Fiedler vector-based
spectral clustering, we have φ(S) ≤

√
2λ2. Furthermore,

we have φ∗ ≤ φ(S) ≤ 2
√
φ∗.

Note that since Fiedler vector-based spectral clustering
(SC for short) needs to calculate the eigenvector of L, its
time complexity is O(n3) and space complexity is O(n2)
(Fiedler 1973), resulting in poor scalability. Thus, some au-
thors devised efficient approximate algorithms. For exam-
ple, Trevisan proposed ASC to approximate the eigenvector
of second smallest eigenvalue of L (Trevisan 2017). As a
result, ASC identifies a cluster S with φ(S) ≤

√
4φ∗ + 2ε

using O((m+n) · 1
ε log n

ε) time cost, in which ε is the error
tolerance. Although the time complexity of ASC is much less
than of SC, the quality of ASC decreases rapidly as shown in
our experiments.

Diffusion-based Local Clustering
Diffusion-based local clustering is another technique that
propagates information from the given query seed vertex
q to identify clusters. Here, we state three state-of-the-art
graph diffusions: Truncated Random Walk (Spielman and
Teng 2004), Personalized PageRank (Andersen, Chung, and
Lang 2006), and Heat Kernel (Kloster and Gleich 2014). For
simplicity, we use πT , πP , and πH to represent the prob-
ability distribution at the end of Truncated Random Walk,
Personalized PageRank, and Heat Kernel, respectively.

Before proceeding further, we give some important nota-
tions. Let P = D−1A be the probability transition matrix of
G, in which Puv = 1/d(u) for any v ∈ N(u). Moreover, we
use P k to represent the k-hop probability transition matrix
of G. Namely, P kuv is the probability that a k-hop (k ≥ 1)
random walk from vertex u would end at vertex v.

1) Truncated Random Walk (Spielman and Teng 2004) is
a graph diffusion algorithm where propagation and trunca-
tion are alternately performed. Specifically, for any vector s
and error tolerance ε, we define a truncation operator Tr(s)
on u as follows:

Tr(s)[u] =

{
s[u], if s[u] ≥ d(u)ε

0, Otherwise
(1)

Furthermore, we use Z0 = χq to represent the one-hot
vector with only a value-1 entry corresponding to the given
query seed q. The propagation and truncation are denoted as
Zi = Tr(Zi−1P), in which Zi−1P is the propagation pro-
cess and Tr(Zi−1P) is the truncation process which can ob-
tain the next probability distribution. Thus, we let πT = ZN
be the probability distribution afterN iterations, in whichN
is an input parameter.

2) Personalized PageRank (Andersen, Chung, and Lang
2006) models a special random walk process. Specifically,
given a stop probability parameter α (a.k.a. teleportation
probability), we denote a α-discount random walk as fol-
lows: (1) It starts from the given query seed q. (2) At each
step it stops in the current vertex with probability α, or it
continues to walk according to the probability transition ma-
trix P with 1-α. Thus, πP (u) is the probability that the α-
discount random walk stops in u.

3) Heat Kernel (Kloster and Gleich 2014) also models a
special random walk process. Specifically, given a heat con-
stant t, πH(u) is the probability that a random walk of length
k starting from the given query seed q would end at the ver-
tex u, in which k is sampled from the Poisson distribution

η(k) = e−ttk

k! . Thus πH(u) =
∞∑
k=0

η(k)P kqu.

Similarly, these diffusion-based local clustering algo-
rithms also consist of three steps: (1) Compute the probabil-
ity distribution π at the end of the corresponding graph diffu-
sion, and y = πD−1. (2) Sort all non-zero entries in y such
that y1 ≥ y2 ≥ ... ≥ ysup(y), in which sup(y) is the number
of the non-zero entries in y. (3) Output S = arg minφ(Si),
in which Si = {y1, y2, ...yi}.

Note that since diffusion-based local clustering algo-
rithms aim to recover the cluster to which the given query

4473

seed q belongs, they only have locally-biased Cheeger-like
quality (Spielman and Teng 2004; Andersen, Chung, and
Lang 2006; Kloster and Gleich 2014). Namely, diffusion-
based local clustering algorithms do not give the theoretical
gap to φ∗. Besides, the clustering quality of their output is
heavily dependent on the given query seed and hard-to-tune
parameters, resulting in that they are unstable and prone to
finding degenerate solutions in most cases (Zhu, Lattanzi,
and Mirrokni 2013; Fountoulakis, Wang, and Yang 2020).

Other Methods
Optimization-based (Leighton and Rao 1999; Arora, Rao,
and Vazirani 2004) and flow-based (Orecchia and Zhu 2014;
Veldt, Gleich, and Mahoney 2016; Wang et al. 2017) are
two important techniques for improving Fiedler vector-
based spectral clustering and diffusion-based local cluster-
ing. For example, Leighton et al. (Leighton and Rao 1999)
used linear programming to solve the conductance-based
graph clustering with O(log n)-approximation. Further-
more, Arora et al. (Arora, Rao, and Vazirani 2004) achieved
the best O(

√
log n)-approximation using a non-trivially

semi-definite programming algorithm with O((n+m)2

εO(1)) time
cost. However, all these methods are mostly of theoretical
interests only, as they are difficult to implement and offer
rather poor practical efficiency (Yang et al. 2019).

The Proposed Algorithms
Here, we first present a three-stage computing framework,
which embraces the computing paradigm of most existing
approaches. Then, we develop two scalable and effective al-
gorithms to solve the conductance-based graph clustering.

Computing Framework
Inspired by most existing approaches (Fiedler 1973; Spiel-
man and Teng 2004; Andersen, Chung, and Lang 2006;
Kloster and Gleich 2014), we propose a three-stage comput-
ing framework PCon. In Stage 1, we give a pre-defined score
function for every vertex according to the corresponding ap-
plications. For simplicity, we use s(u) to represent the score
of vertex u. In Stage 2, we iteratively remove the vertex with
the smallest score. Such an iterative deletion process is re-
ferred to as a peeling process. In Stage 3, we output the result
with smallest conductance during the peeling process.

Obviously, Stage 1 is key to our proposed computing
framework. Different algorithms have different score func-
tions. For example, s(u) = x[u] for Fiedler vector-based
spectral clustering, in which x is the eigenvector of second
smallest eigenvalue of L. In diffusion-based local clustering,
we can know that s(u) = y[u], in which y = πD−1 and π
is the probability distribution of the diffusion process. Thus,
most state-of-the-art algorithms can be reduced to the pro-
posed three-stage computing framework. However, the pri-
mary problem with these existing algorithms to partition the
graph is that it is difficult to efficiently and effectively obtain
the score function. To this end, in the next sections, we de-
vise two new score functions, which are easier to compute.

Algorithm 1: PCon core
Input: An undirected graph G(V,E)
Output: A cluster S

1: {u1, u2, ..., un} ← the degeneracy ordering
2: i← n, Si ← V , S ← V
3: while i 6= 0 do
4: if vol(Si) ≤ m and φ(Si) < φ(S) then
5: S ← Si
6: end if
7: Si−1 ← Si \ {ui}, i← i− 1
8: end while
9: return S

v4v3v1v5 v2v7v9v6 v8

Degeneracy ordering

Figure 2: A degeneracy ordering of vertices in Figure 1.

The PCon core Algorithm
Recall that in Stage 2, we need to iteratively remove the ver-
tex with the smallest score. Namely, we have to create a lin-
ear ordering on vertices. Many ordering strategies have been
proposed for numerous graph analysis tasks, such as graph
coloring (Hasenplaugh et al. 2014) and k-clique listing (Li
et al. 2020). However, ordering techniques for conductance-
based graph clustering are less explored. To fill this gap, we
propose a simple algorithm with the help of the well-known
degeneracy ordering (Batagelj and Zaversnik 2003).

Definition 2 (Degeneracy ordering) Given an undirected
graph G, a permutation (u1, u2, ..., un) on all vertices of G
is a degeneracy ordering iff every vertex ui has the minimum
degree in the subgraph of G induced by {ui, ui+1, ..., un},
that is, ui = arg min{dVi(u)|u ∈ Vi} where Vi =
{ui, ui+1, ..., un}.

We use degeneracy ordering to assign the score s(u) of
vertex u. Specifically, u is the s(u)-th element in the degen-
eracy ordering from left to right.

Example 1 Reconsider the graph in Figure 1. According
to Definition 2, we can derive the degeneracy ordering as
{v6, v8, v9, v7, v5, v1, v2, v3, v4} which is illustrated in Fig-
ure 2. Consider a vertex v1, we can know that s(v1) = 6.
This is because that v1 has the minimum degree in the sub-
graph of G induced by {v1, v2, v3, v4}. Similarity, we have
s(v6) = 1 and s(v7) = 4.

The degeneracy ordering can be efficiently computed
within linear time by the classic core-decomposition
(Batagelj and Zaversnik 2003). Specifically, it iteratively re-
moves the vertex with the smallest degree in the current sub-
graph until all vertices are removed. When a vertex is re-
moved, the degree of other vertices is updated accordingly.
As a consequence, the sequence of the removed vertices
forms the degeneracy ordering. Using a proper data structure
(e.g., bin-sort), we can implement the above vertex-removal

4474

process in linear time (Batagelj and Zaversnik 2003). Based
on the degeneracy ordering, we propose a simple but prac-
tically effective algorithm PCon core, which is outlined in
Algorithm 1. Specifically, we first set the score s(u) for each
vertex u ∈ V according to the degeneracy ordering (Line 1).
Then, we execute Stage 2 (Lines 3, 7, and 8) and Stage 3
(Lines 4-6 and 9).

The PCon de Algorithm
As stated in the Introduction, Fiedler vector-based spec-
tral clustering can obtain a cluster with conductance of
O(
√
φ∗). However, Fiedler vector-based spectral clustering

has prohibitively high time and space complexity. On the
other hand, although diffusion-based local clustering has a
very low time complexity, it is heuristic without a global
conductance guarantee. Thus, an interesting problem is to
devise an algorithm that has better time complexity than
Fiedler vector-based spectral clustering and better conduc-
tance quality than diffusion-based local clustering. To this
end, we propose a novel algorithm PCon de with linear time
and space complexity, which has a near-constant approxima-
tion ratio.
Lemma 1 Given an undirected graphG(V,E) and a vertex

subset S, we have φ(S) = 1−
∑
u∈S

dS(u)∑
u∈S

dV (u) if vol(S) ≤ m.

Proof 1 According to Definition 1, if vol(S) ≤ m, we have
φ(S) = |E(S,S̄)|

min{vol(S),2m−vol(S)} = |E(S,S̄)|
vol(S) . Furthermore,

|E(S,S̄)|
vol(S) =

∑
u∈S

dS̄(u)∑
u∈S

dV (u) =

∑
u∈S

dS̄(u)+
∑
u∈S

dV (u)−
∑
u∈S

dV (u)∑
u∈S

dV (u) =∑
u∈S

dV (u)−
∑
u∈S

dS(u)∑
u∈S

dV (u) . Thus, φ(S) = 1−
∑
u∈S

dS(u)∑
u∈S

dV (u) .

For simplicity, we denote a function g(S) =

∑
u∈S

dS(u)

2
∑
u∈S

dV (u)

and assume that the larger the value of g(S), the better the
quality of S. Generally, we let S̃ be the optimal vertex set
for g(.). That is, g(S̃) ≥ g(S) for any vertex subset S ⊆ V .
Lemma 2 Given an undirected graph G(V,E), we have
dS̃(u)

dV (u) ≥ g(S̃) for any u ∈ S̃ holds.

Proof 2 This lemma can be proved by contradiction. As-
sume that there is a vertex u ∈ S̃ such that dS̃(u)

dV (u) <

g(S̃), we have dS̃(u) < g(S̃)dV (u). Thus, g(S̃ \

{u}) =
1/2

∑
v∈S̃

dS̃(v)−dS̃(u)∑
v∈S̃

dV (v)−dV (u) >
1/2

∑
v∈S̃

dS̃(v)−g(S̃)dV (u)∑
v∈S̃

dV (v)−dV (u) =

g(S̃)
∑
v∈S̃

dV (v)−g(S̃)dV (u)∑
v∈S̃

dV (v)−dV (u) = g(S̃), which contradicts that S̃

is the optimal vertex set for g(.). As a result, dS̃(u)

dV (u) ≥ g(S̃)

for any u ∈ S̃ holds.
Definition 3 (Degree ratio) Given an undirected graph
G(V,E) and a subgraphGS , the degree ratio of u ∈ S w.r.t.
G and GS is defined as DrS(u) = dS(u)

dV (u) .

Algorithm 2: PCon de
Input: An undirected graph G(V,E)

Output: A cluster Ŝ
1: S ← V ; Ŝ ← V

2: DrS(u)← dS(u)
dV (u) for each vertex u ∈ S

3: while S 6= ∅ do
4: u← arg min{DrS(u)|u ∈ S}
5: S ← S \ {u}
6: if g(S) > g(Ŝ) and vol(S) ≤ m then
7: Ŝ ← S
8: end if
9: for v ∈ NS(u) do

10: DrS(v)← DrS(v)− 1
dV (v)

11: end for
12: end while
13: return Ŝ

Based on the above lemmas and definitions, we devise
a linear time greedy removing algorithm called PCon de,
which is shown in Algorithm 2. In particular, Algorithm
2 first initializes the current search space S as V , candi-
date result Ŝ as V , and the degree ratio DrS(u) for every
vertex u ∈ S according to Definition 3 (Lines 1-2). Sub-
sequently, it executes the greedy removing process in each
round to improve the quality of the target cluster (Lines 3-
12). Specifically, in each round, it obtains one vertex u with
the smallest degree ratio (Line 4). Lines 5-11 update the
current search space S, the candidate result Ŝ if any, and
DrS(v) for v ∈ NS(u). The iteration terminates once the
current search space is empty (Line 3). Finally, it returns Ŝ
as the approximate solution (Line 13).

Theorem 3 Algorithm 2 can identify a cluster with conduc-
tance 1/2 + 1/2φ∗.

Proof 3 Let S̃ is the optimal vertex set for g(.). In Lines 3-
12, Algorithm 2 executes the peeling process. That is, in each
round, it greedily deletes the vertex with the smallest degree
ratio. Consider the round t when the first vertex u of S̃ is
deleted. Let Vt be the vertex set from the beginning of round
t. Clearly, S̃ is the subset of Vt because u is the first deleted
vertex of S̃. This implies that min

v∈Vt
DrVt(v) = DrVt(u) =

dVt (u)

dV (u) ≥
dS̃(u)

dV (u) . Furthermore, g(Vt) =

∑
v∈Vt

dVt (v)

2
∑
v∈Vt

dV (v) =

∑
v∈Vt

dV (v)
dVt

(v)

dV (v)

2
∑
v∈Vt

dV (v) ≥
∑
v∈Vt

dV (v)
dVt

(u)

dV (u)

2
∑
v∈Vt

dV (v) =
dVt (u)

2dV (u) ≥
dS̃(u)

2dV (u) .

By Lemma 2, we have dS̃(u)

dV (u) ≥ g(S̃). Thus, g(Vt) ≥ g(S̃)
2 .

Since Algorithm 2 maintains the optimal solution during the
peeling process in Lines 6-8, Ŝ will be returned in Line 13
and g(Ŝ) ≥ g(Vt) ≥ g(S̃)

2 . On the other hand, by Lemma 1,

we have g(Ŝ) = 1−φ(Ŝ)
2 and g(S∗) = 1−φ(S∗)

2 . According
to the definition of S̃, we know that g(S̃) ≥ g(S∗). Thus,

4475

Dataset |V | |E| d̄

DBLP 317,080 1,049,866 6.62
Youtube 1,134,890 2,987,624 5.27
Pokec 1,632,803 22,301,964 2.73

LJ 4,843,953 42,845,684 17.69
Orkut 3,072,441 117,185,083 76.28

Twitter 41,652,231 1,202,513,046 57.74

Table 2: Dataset statistics. d̄ is the average degree.

1−φ(Ŝ)
2 = g(Ŝ) ≥ g(S̃)

2 ≥ g(S∗)
2 = 1−φ(S∗)

4 . Namely,
φ(Ŝ) ≤ 1− 1−φ(S∗)

2 = 1/2 + 1/2φ∗. As a result, Algorithm
2 can identify a cluster with conductance 1/2 + 1/2φ∗.

Empirical Results
Experimental Setup
We evaluate our proposed solutions on six real-life publicly-
available datasets2 (Table 2), which are widely used bench-
marks for conductance-based graph clustering (Shun et al.
2016; Yang et al. 2019). The maximum connected compo-
nents of these datasets are used in the experiments. We also
use five synthetic graphs LFR (Lancichinetti, Fortunato, and
Kertész 2009), WS (Watts and Strogatz 1998), PLC (Holme
and Kim 2002), ER (Erdos, Rényi et al. 1960), and BA
(Barabási and Albert 1999). The following six competitors
are implemented for comparison.

• Eigenvector-based methods: SC (Fiedler 1973) and ASC
(Trevisan 2017). SC (resp. ASC) used the exact eigenvec-
tor (resp. approximate eigenvector) of the second small-
est eigenvalue of L to execute the peeling process. We
use sparse matrices to highly optimize these algorithms.
• Diffusion-based methods: NIBBLE PPR (Andersen,

Chung, and Lang 2006) and HK Relax (Kloster and Gle-
ich 2014). Since NIBBLE PPR and HK Relax took a seed
vertex as input, to be more reliable, we randomly se-
lect 50 vertices as seed vertices and report the average
runtime and quality. Unless specified otherwise, follow-
ing previous work (Shun et al. 2016), we set α = 0.01
and ε = 1

m for NIBBLE PPR; t = 10 and ε = 1
m for

HK Relax. Note that we do not include NIBBLE of Table
1 in the experiments because NIBBLE is outperformed
by NIBBLE PPR and HK Relax (Shun et al. 2016).
• Flow-based methods: SimpleLocal (Veldt, Gleich, and

Mahoney 2016) and CRD (Wang et al. 2017). These
methods devise specialized max-flow algorithms with
early termination. We take their default parameters in our
experiments.

Results on Real-World Graphs
Table 3 reports runtime and conductance for each method
on real-world graphs. We have the following observations:
(1) The proposed algorithms PCon core and PCon de are

2All datasets can be downloaded from http://snap.stanford.edu/

DBLP Youtube Orkut0.00

0.05

0.10

0.15

0.20

0.25

0.30

N
M

I

SC
ASC
NIBBLE_PPR

HK_Relax
SimpleLocal
CRD

PCon_core
PCon_de

Figure 3: NMI scores on real-world graphs with ground-
truth clusters.

DBLP Youtube Pokec LJ Orkut Twitter0
100

101

102

103

104

105

M
em

or
y…

ov
er
he
ad
…
(M

B
)

SC
PCon_core
PCon_de

Figure 4: Memory overhead on real-world graphs (excluding
the size of the graph itself).

consistently faster than other methods on most graphs, es-
pecially for larger graphs. In particular, they achieve the
speedups of 5, 14, 42, and 17 times over SC on DBLP,
Youtube, LJ, and Twitter, respectively. For example, on
Twitter with more than a few billion edges, PCon core and
PCon de take 5,486 seconds and 7,655 seconds to obtain
the result, respectively, while SC takes 130,570 seconds.
(2) PCon core is slightly fast than PCon de but PCon core
has poor conductance value. (3) The clustering quality re-
turned by PCon de outperforms other methods on five of
the six datasets. Besides, PCon de always outperforms NIB-
BLE PPR and HK Relax. This is because PCon de can find
clusters with near-liner approximation ratio, while Fiedler
vector-based spectral clustering algorithms (i.e., SC and
ASC) have quadratic chegger bound and diffusion-based lo-
cal clustering algorithms (i.e., NIBBLE PPR and HK Relax)
have no guarantee of clustering quality (Table 1). Therefore,
these results give clear evidences that the proposed algo-
rithms can achieve significant speedup with high clustering
quality compared with the baselines.

We use the normalized mutual information (NMI for
short) (Cilibrasi and Vitányi 2005) to measure how “close”
each detected cluster is to the ground-truth one. Note that for
a cluster C, the larger the NMI, the better the quality of the
cluster C. Figure 3 shows NMI scores of different methods
on real-world graphs with ground-truth clusters. As can be
seen, PCon de consistently outperforms other methods. The
NMI scores of all methods other than PCon de vary signif-

4476

Runtime/Conductance DBLP Youtube Pokec LJ Orkut Twitter

SC 56/0.009 552/0.006 165/0.002 14492/0.001 837/0.007 130570/ 0.002
ASC 21/0.482 73/0.554 730/0.454 1185/0.423 3089/0.415 67409/0.602

NIBBLE PPR 7/0.130 18/0.110 156/0.184 784/0.021 3768/0.009 5822/0.177
HK Relax 31/0.127 138/0.113 1271/0.011 2144/0.036 6016/0.008 99613/0.026

SimpleLocal 108/0.009 596/0.006 213/0.002 14807/0.001 16267/0.013 283745/0.004
CRD 47/0.184 235/0.183 1231/0.218 1279/0.194 7261/0.141 38060/0.336

PCon core 9/0.106 27/0.404 116/0.327 266/0.088 500/0.223 5486/0.419
PCon de 11/0.027 39/0.004 141/0.001 345/0.000 577/0.006 7655/0.000

Table 3: Runtime (in seconds) and conductance on real-world graphs. The best result in each metric is highlighted in bold.

104 105 106 107

n
0

100

101

102

103

104

105

R
un
ni
ng
…
tim

e…
(s
)

SC
PCon_core
PCon_de

(a) Scalability testing on ER synthetic graph

0.1 0.3 0.5 0.7 0.9
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

N
M
I…/
…

SC->NMI
PCon_de->NMI
SC->
PCon_de->

(b) LFR synthetic graphs varying µ

104 105 106 107

n
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

N
M
I…/
…

SC->NMI
PCon_de->NMI
SC->
PCon_de->

(c) LFR synthetic graphs varying n

Figure 5: Results on synthetic graphs.

icantly depending on the dataset. For example, SC, Simple-
Local, and CRD are almost zero on DBLP and Youtube, but
they have relatively good NMI scores on Orkut. Therefore,
these results imply that PCon de approximates the ground-
truth clusters more effectively than all other methods.

From Figure 4, we can see that memory overhead of
PCon core and PCon de are consistently less than SC on
all datasets. In particular, they save 1.4 ∼ 7.8 times mem-
ory overhead compared to SC. For example, on Orkut graph,
PCon core and PCon de consume about 535.88MB and
746.26MB to obtain the result, respectively, while SC con-
sumes 4209.25MB. This is because PCon core and PCon de
only need linear space complexity to calculate the score of
each vertex. However, SC adopts the eigenvector of the ma-
trix to compute the score of each vertex, thus it requires
squared space complexity in the worst case. These results
demonstrate that PCon core and PCon de can identify clus-
ters with low memory.

Results on Synthetic Graphs
We further use synthetic graphs to evaluate the scalability
and effectiveness of our proposed solutions. In particular,
we only present the scalability for ER (Erdos, Rényi et al.
1960) with varying the number of vertices in Figure 5(a),
but all other synthetic graphs have similar trends. As can be
seen, PCon core and PCon de scale near-linear with respect
to the size of the graphs. However, SC has poor scalability
because its time cost fluctuates greatly as the graph size in-
creases. These results indicate that our proposed algorithms
can handle massive graphs while SC cannot.

The LFR model (Lancichinetti, Fortunato, and Kertész
2009) is a widely used benchmark with ground-truth clus-
ters. In Figure 5(b), we generate five synthetic graphs com-
posed of 1,000,000 vertices by varying the mixing ratio µ
from 0.1 to 0.9. A larger µ implies that the number of edges
crossing clusters increases, resulting in that being more dif-
ficult to detect intrinsic clusters. As can be seen, PCon de
consistently outperforms SC in terms of NMI and φ. Mean-
while, the quality of PCon de decreases as µ increases, but
it is always better than SC. Furthermore, we also generate
four graphs with varying the number of vertices when fixing
µ = 0.4. Figure 5(c) shows a similar trend as Figure 5(b).
As a consequence, these results imply that PCon de approx-
imates the ground-truth clusters more effectively than SC.

Conclusion
In this paper, we devise a peeling-based computing frame-
work PCon for conductance-based graph clustering. We ob-
serve that most state-of-the-art algorithms can be reduced
to PCon. Inspired by our framework, we first propose an
efficient heuristic algorithm PCon core, which adopts the
degeneracy ordering to detect clusters. To improve the ac-
curacy, we further propose a powerful PCon de with near-
constant approximation ratio, which achieve an important
theoretical improvement over existing approaches such as
Fiedler vector-based spectral clustering. Finally, extensive
experiments on eleven datasets with six competitors demon-
strate that the proposed algorithms can achieve 5∼42 times
speedup with a high accuracy and 1.4∼7.8 times less mem-
ory than the state-of-the-art solutions.

4477

Acknowledgments
This work is supported by (i) National Key R&D Program
of China 2021YFB3301300, (ii) NSFC Grants U2241211,
62072034, U1809206, (iii) Fundamental Research Funds
for the Central Universities under Grant SWU-KQ22028,
(iv) University Innovation Research Group of Chongqing
CXQT21005, (v) Industry-University-Research Innovation
Fund for Chinese Universities 2021ALA03016, and (vi)
CCF-Huawei Populus Grove Fund. Rong-Hua Li is the cor-
responding author of this paper.

References
Alon, N.; and Milman, V. D. 1985. λ1, isoperimetric in-
equalities for graphs, and superconcentrators. Journal of
Combinatorial Theory, Series B, 38(1): 73–88.
Andersen, R.; Chung, F. R. K.; and Lang, K. J. 2006. Local
Graph Partitioning using PageRank Vectors. In FOCS, 475–
486.
Arora, S.; Rao, S.; and Vazirani, U. V. 2004. Expander flows,
geometric embeddings and graph partitioning. In Babai, L.,
ed., STOC. ACM.
Barabási, A.-L.; and Albert, R. 1999. Emergence of scaling
in random networks. science, 286(5439): 509–512.
Batagelj, V.; and Zaversnik, M. 2003. An O(m) Al-
gorithm for Cores Decomposition of Networks. CoRR,
cs.DS/0310049.
Belkin, M.; and Niyogi, P. 2001. Laplacian Eigenmaps
and Spectral Techniques for Embedding and Clustering. In
NIPS, 585–591.
Bianchi, F. M.; Grattarola, D.; and Alippi, C. 2020. Spectral
Clustering with Graph Neural Networks for Graph Pooling.
In ICML, 874–883.
Chang, L.; and Qin, L. 2019. Cohesive Subgraph Computa-
tion Over Large Sparse Graphs. In ICDE, 2068–2071.
Chawla, S.; Krauthgamer, R.; Kumar, R.; Rabani, Y.; and
Sivakumar, D. 2006. On the Hardness of Approximating
Multicut and Sparsest-Cut. Comput. Complex., 15(2): 94–
114.
Cilibrasi, R.; and Vitányi, P. M. B. 2005. Clustering by com-
pression. IEEE Trans. Inf. Theory, 51(4): 1523–1545.
Erdos, P.; Rényi, A.; et al. 1960. On the evolution of random
graphs. Publ. Math. Inst. Hung. Acad. Sci, 5(1): 17–60.
Fiedler, M. 1973. Algebraic connectivity of graphs.
Czechoslovak mathematical journal, 23(2): 298–305.
Fortunato, S. 2009. Community detection in graphs. Physics
Reports, 486(3): 75–174.
Fountoulakis, K.; Wang, D.; and Yang, S. 2020. p-Norm
Flow Diffusion for Local Graph Clustering. In ICML, vol-
ume 119, 3222–3232.
Hasenplaugh, W.; Kaler, T.; Schardl, T. B.; and Leiserson,
C. E. 2014. Ordering heuristics for parallel graph coloring.
In Blelloch, G. E.; and Sanders, P., eds., SPAA.
Holme, P.; and Kim, B. J. 2002. Growing scale-free net-
works with tunable clustering. Physical review E, 65(2):
026107.

Kloster, K.; and Gleich, D. F. 2014. Heat kernel based com-
munity detection. In KDD, 1386–1395.
Lancichinetti, A.; Fortunato, S.; and Kertész, J. 2009. De-
tecting the overlapping and hierarchical community struc-
ture in complex networks. New journal of physics, 11(3):
033015.
Leighton, T.; and Rao, S. 1999. Multicommodity max-flow
min-cut theorems and their use in designing approximation
algorithms. Journal of the ACM (JACM), 46(6): 787–832.
Leskovec, J.; Lang, K. J.; and Mahoney, M. W. 2010. Em-
pirical comparison of algorithms for network community de-
tection. In WWW, 631–640.
Li, R.; Gao, S.; Qin, L.; Wang, G.; Yang, W.; and Yu, J. X.
2020. Ordering Heuristics for k-clique Listing. Proc. VLDB
Endow., 13(11): 2536–2548.
Newman, M. E. 2004. Fast algorithm for detecting commu-
nity structure in networks. Physical review E, 69(6): 066133.
Orecchia, L.; and Zhu, Z. A. 2014. Flow-Based Algorithms
for Local Graph Clustering. In Chekuri, C., ed., SODA,
1267–1286. SIAM.
Shi, J.; and Malik, J. 1997. Normalized Cuts and Image
Segmentation. In CVPR, 731–737.
Shun, J.; Roosta-Khorasani, F.; Fountoulakis, K.; and Ma-
honey, M. W. 2016. Parallel Local Graph Clustering. Proc.
VLDB Endow., 9(12): 1041–1052.
Spielman, D. A.; and Teng, S. 2004. Nearly-linear time algo-
rithms for graph partitioning, graph sparsification, and solv-
ing linear systems. In STOC, 81–90.
Tolliver, D.; and Miller, G. L. 2006. Graph Partitioning
by Spectral Rounding: Applications in Image Segmentation
and Clustering. In CVPR, 1053–1060.
Trevisan, L. 2017. Lecture notes on graph parti-
tioning, expanders and spectral methods. University
of California, Berkeley, https://people. eecs. berkeley.
edu/luca/books/expanders-2016. pdf.
Veldt, N.; Gleich, D.; and Mahoney, M. 2016. A simple and
strongly-local flow-based method for cut improvement. In
ICML, 1938–1947.
Wang, D.; Fountoulakis, K.; Henzinger, M.; Mahoney,
M. W.; and Rao, S. 2017. Capacity Releasing Diffusion for
Speed and Locality. In ICML, volume 70, 3598–3607.
Watts, D. J.; and Strogatz, S. H. 1998. Collective dynamics
of small-world networks. nature, 393(6684): 440–442.
Xu, X.; Yuruk, N.; Feng, Z.; and Schweiger, T. A. J. 2007.
SCAN: a structural clustering algorithm for networks. In
KDD, 824–833.
Yang, J.; and Leskovec, J. 2015. Defining and evaluating
network communities based on ground-truth. Knowl. Inf.
Syst., 42(1): 181–213.
Yang, R.; Xiao, X.; Wei, Z.; Bhowmick, S. S.; Zhao, J.; and
Li, R. 2019. Efficient Estimation of Heat Kernel PageRank
for Local Clustering. In SIGMOD, 1339–1356.
Zhu, Z. A.; Lattanzi, S.; and Mirrokni, V. S. 2013. A Local
Algorithm for Finding Well-Connected Clusters. In ICML,
396–404.

4478

